

MODULE **DESCRIPTOR**

MODULE TITLE	DIGITAL ELECTRONICS			
MODULE CODE	EL1242 (L4)	CREDIT VALUE	20 CREDITS (10 ECTS)	
CAMPUS	UCLAN CYPRUS	UCLAN CYPRUS		
SCHOOL	SCHOOL OF SCIE	SCHOOL OF SCIENCE		

MODULE AIMS

Provide understanding of basic concepts applicable to digital systems and microprocessor systems.

MODULE CONTENT

Introduction to Digital Electronics and Microprocessors.

Digital Electronics

Number systems; Binary arithmetic; Boolean algebra, logic theory, minimisation techniques; Combinational and sequential logic. Analysis of logic technologies using CMOS and TTL techniques including for example fanout, propagation delay and power dissipation. Hardware design of synchronous and asynchronous logic; flip-flops, registers, counters.

Microprocessors and Microcontrollers

Basic minimum system, (CPU, memory, and I/O), Von Neumann and Harvard architectures. Memory technologies, memory mapping, address decoding.

Programming languages for microprocessors/microcontrollers, development tools and environments.

INTENDED LEARNING OUTCOMES

1			
II. ID	vesign combinational and sequential logic systems from specifications, and analyse their		
be	ehaviour.		
2. E	Explain the operation of a basic microprocessor system, relating the description to the		
a	rchitecture of the processor.		
3. In	nterpret software used in a processor based system		
4 . D	Design hardware and software to meet the specification for a simple processor based system		

TEACHING METHODS

Lectures, tutorials and laboratory work are used to deliver the syllabus. The lectures introduce the necessary theoretical & conceptual content. Regular tutorial exercises are used to support the lectures and contextualise and reinforce comprehension of the factual content through application.

Laboratory sessions are used primarily to develop competencies in two main areas:

(a) the design & synthesis of combinatorial & sequential logic circuits

(b) familiarisation with and use of development tools to design test and debug assembly language programs running on microcontroller hardware

In both areas the laboratory work naturally leads in to an associated design & implementation assignment consolidating and extending the taught material. Typically the µController assignment involves integration of knowledge from across several co-requisite modules.

ASSESSMENT **METHODS**

The module is assessed through a Practical Assignment and a Written exam.